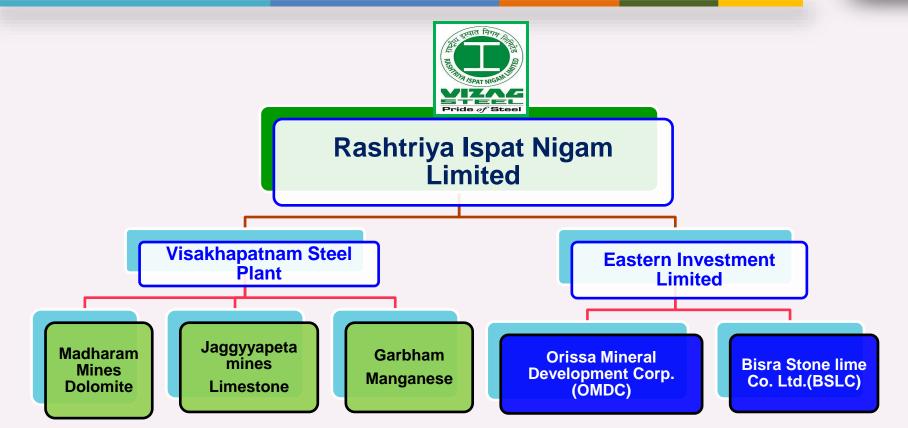
PRESENTATION For CII GBC NATIONAL ENERGY AWARD FOR EXCELLENCE IN ENERGY MANAGEMENT

Rashtriya Ispat Nigam Limited VISAKHAPATNAM STEEL PLANT

1

K V Bangar Raju, Sr. Mgr(EMD) N K Rastogi, Mgr (EMD)

K SUDHAKAR, GM(EMD)I/c Designated Energy Manager


CONTENTS

- Company Profile
- Process Flow
- Energy consumption overview
- >Bench marking(Internal/External)
- >Encon project planned in FY 2024-25
- Energy Saving projects implemented in FY 2021-22
- Energy Saving projects implemented in FY 2022-23
- Energy Saving projects implemented in FY 2023-24
- >Innovative Projects
- >Utilization of Renewable Energy Sources
- Utilization of Waste as a fuel
- GHG Inventorisation
- **>EMS & Other requirements**
- ISO 50001 certification
- Learning from CII & other award programmes
- Net Zero commitment
- >Awards & Achievements

RINL Corporate Structure

RINL – Growth Plan

 RINL's completed Upgradation & Modernization for 7.3 MTPA of Crude Steel.

 Products includes bars, rods, wire rod and structural's and Value Added Products

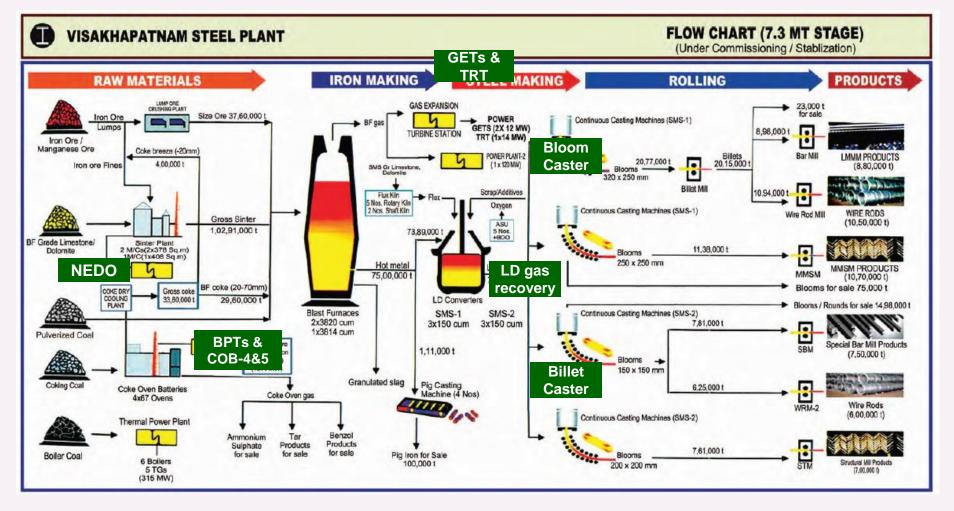
 Vision envisages growth to 20 Mtpa by 2032-33 in phases

Turnover (2023-24)- 23,224 INR Cr

Major Accreditations

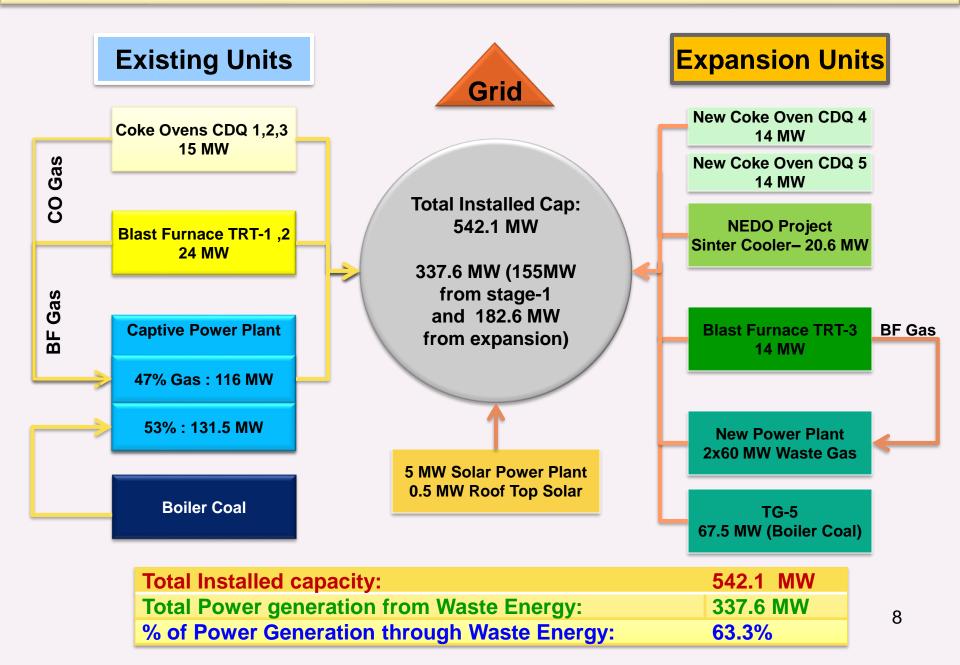
The 1st ISP to be certified for Quality, Health & Safety and Environment

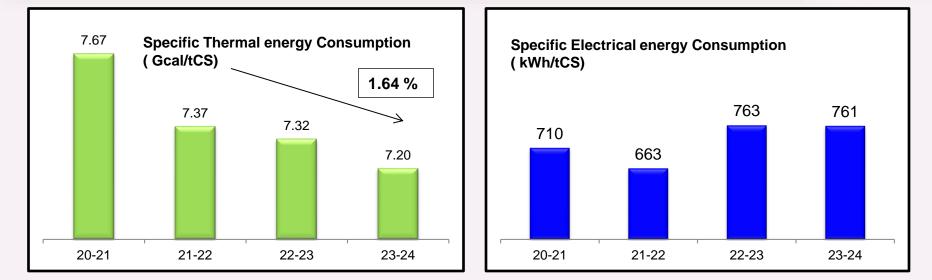
1st Steel Plant to get ISO 50001 certification for Energy Management

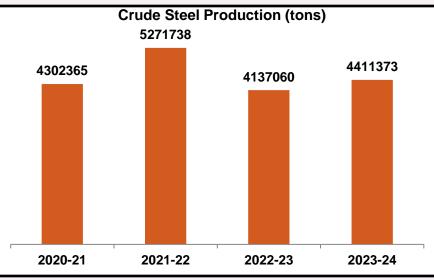

1st Steel PSE to sign Integrity Pact of Transparency International

CMMI Level 3 certification for IT Systems and ISO 27001 for ISMS

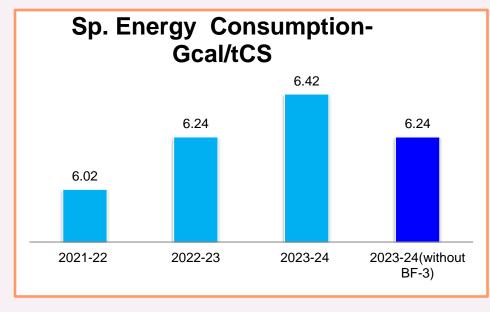
1st ISP to be 5S Certified for the whole plant

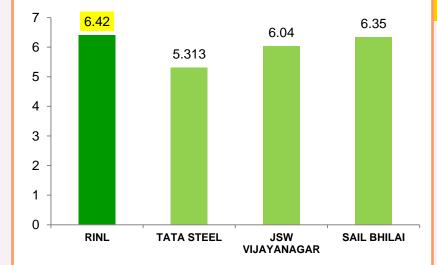



- ➢Sinter Plant with NEDO
- >CO Battery with Coke Dry Quenching and Back Pressure Turbine Station.
- >BFs with Gas Expansion Turbine &Top Recovery Turbine station.
- SMS-1 & 2 with LD gas recovery plant.
- >Continuous Bloom & Billet caster.


Power Generation capacity from Waste Energy (MW)

Energy Consumption Overview





Rashtriya Ispat Nigam Limited

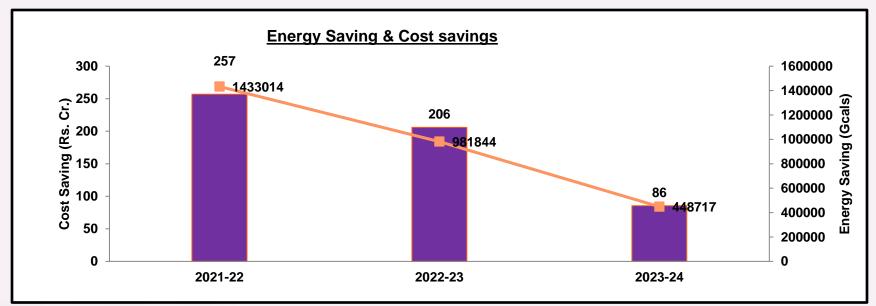
Internal Bench Marking of SEC(Gcal/tCS)

Energy(2023-24) GHG Emission		Emission	Gap: 1.1 Gcal/tCS		
RINL	Tata Steel	RINL	Tata Steel	 Coal injection > 182kg/tHM(0.20 Gcal/tCS) vs 82 kg/tHM Fuel rate 526 kg/tHM vs 569 kg/tHM (0.29 Gcal/tCS). Plant Production: 10.6 Mt Crude Steel. 	
6.42	5.313	2.76	2.43	4) Gross coke yield: 74.5% vs 72.3% 5) CO gas yield: 319 vs 330 Nm3/TDC 6) LD gas yield: 87 vs 108 Nm3	

External Bench Marking of SEC(Gcal/tCS)

Energy	(2023-24)	GHG I	Emission	Gap :1.44 Gcal/tCS
RINL 6.42	NSC 4.98	RINL 2.75	NSC 1.96	 Scrap usage : 200 kg/thm(As per Japanese Industry)-RINL: 83 kg/tCS All Energy Conservation technologies Coke Dry Quenching, Top Pressure Recovery Turbine,
7 - 6 6 - 5 - 4 - 3 - 2 - 1 - 0	Gap: 1.4	4 Gcal/tCS 4.98	5.73	BOF Gas Recovery, Sinter Cooler waste heat recovery Pulverized Coal Injection, BF stoves Heat Recovery, Billet Caster, Hot Charging, Regenerative Burners, Coal Moisture Control Hydrogen injection in BF Sensible Heat recovery from BOF gas 3) Waste Plastics Injection and tires(0.2 million
-	RINL N	lippon Steel	WSA Reference Plant	tons- 6 kg/tCS) 4) Petro fuel 16 lts/Tcs

Rashtriya Ispat Nigam Limited


Energy Conservation Projects planned in 2024-25

SI No	Name of Energy Conservation Activity	Expected Energy Savings		
		Gcal /MkWh	Rs. Million	
1	Increasing the PCI consumption in BF 2 from 83.4 kg/thm to 114 kg/tHM 97082		14.35	
2	Increasing the PCI consumption in BF3 from 40.8 kg/thm to 110 kg/tHM	219544		
3	Increasing the power generation from TRT of BF-3 from 1.11 MW to 10MW.	78	68.3	
4	Improving power generation from waste heat recovery of COB 4 from 4.34MW to 9MW	41	35.8	
5	Re commissioning of SHRPP to generate power to 5MW	44	38.4	
6	Re commissioning of 5MW solar power plant to generate 0.9 MW.	8	6.9	
	Total Savings		196.2	

Summary of the Projects identified & Implemented

YEAR	No of Projects	Investment In Rs Cr	Thermal Savings (Gcals)	Electrical Savings (Million KWH)	Savings in Rs.Cr	Saving s (GcaltC S)	Paybac k period
2021-22	26	0.123	1073878	149.64	257.3	0.272	< 1 year
2022-23	21	22	835756	60.87	206	0.237	< 1 year
2023-24	15	10	359221	37.29	85.7	0.101	< 1 year

ENCON Projects with Investment (2021-22)

S.No.	Title of Project	Energy Savings in Fride of S			
3. NO.	Title of Project	Gcal/ MKwh	Rs Millions		
1	Reduction in Power Consumption during Deriming at Air Separation Unit-5	0.78	0.13		
2	Hydraulic Modfication in MMSM reheating furnace	15785	1.0		
3	Reduction in power Consumption by reducing idle running of Stelmor Blowers at Wire Rod Mill	1.06	0.10		

ENCON Projects with no Investment (2021-22)

		Energy S	avings in
S.No.	Title of Project	Gcal/ MKwh	Rs Millions
1	Improvement in tar yield at coke oven from 3.07% to 3.09%	3884	5
2	Reduction in coke breeze consumption at Sinter Plant from 71.6 Kg/t charged sinter to 64.2 Kg/t charged Sinter.	403953	541
3	Reduction in Sp. Heat Consumption of Sinter Plant-2 from 12 Mcal/tGS to 11 Mcal/tGS.	3285	4
4	Reduction in Sp. Power Consumption of Sinter Plant-1 from 63.03 Kwh/tGS to 62.13 Kwh/tGS.	4.25	32
5	Increasing in Pulverized Coal Injection (PCI) in Blast Furnace-2 from 82.9 Kg/tHM to 100.3 Kg/tHM.	150692	202
6	Reduction in Sp. Power Consumption of Blast Furnace-3 from 50.41 Kwh/tHM to 42.27 Kwh/tHM.	10.5	80
7	Improvement in LD gas yield at SMS from 81 Ncum/tCS to 92 Ncum/tCS.	106526	143
8	Reduction in Sp. Heat Consumption of SMS-1 from 38 Mcal/tCS to 31 Mcal/tCS.	18760	25
9	Reduction in Sp. Heat Consumption of SMS-2 from 35 Mcal/tCS to 33 Mcal/tCS.	5184	7
10	Reduction in Sp. Power Consumption of SMS-2 from 113.06 Kwh /tCS to 109.70 Kwh /tCS.	8.71	66

Rashtriya Ispat Nigam Limited

ENCON Projects with no Investment (2021-22)

S.No			avings in
	Title of Project	Gcal/ MKwh	Rs Millions
11	Reduction in Sp. Power Consumption of Bar Mill from 72.91 Kwh /tIP to 67.81 Kwh /tIP.	4.33	33
12	Reduction in Sp. Heat Consumption of Special Bar Mill from 323 Mcal /tIP to 306 Mcal/tIP	7260	10
	Reduction in Sp. Power Consumption of Special Bar Mill from 115.35 Kwh /tIP to 109.02 Kwh /tIP.	2.70	21
14	Reduction in Sp. Power Consumption of WRM-2 from 200.46 Kwh /tIP to 193.31 Kwh /tIP	3.62	28
15	Reduction in Sp. Power Consumption of MMSM from 91.67 Kwh /tIP to 76.08 Kwh /tIP.	11.19	85
16	Reduction in Sp. Heat Consumption of STM from 335 Mcal /tIP to 309 Mcal /tIP.	10730	14
17	Reduction in Sp. Power Consumption of STM from 106.79 Kwh /tIP to 96.38 Kwh /tIP.	0.01	0.08
18	Reduction in Sp. Power Consumption of CRMP from 41.82 Kwh /tGL to 35.28 Kwh /tGL.	4	32
19	Reduction in Sp. Heat Consumption of CRMP-1 from 1329 Mcal /tGL to 1220 Mcal /tGL.	23418	31
20	Reduction in Sp. Heat Consumption of CRMP-2 from 951 Mcal /tGL to 909 Mcal /tGL.	18020	24
21	Improvement in power generation in BPTS from 7.54 MW to 10.91 MW	29.52	224
22	Improvement in power generation in COB-4&5 from 7.95 MW to 15.79 MW.	68.68	521
23	Reduction in BF Gas bleeding from 10.28 % to 6.64 %.	306383	410

ENCON Projects with Investment (2022-23)

S.No	. Title of Project	Investment	Energy Sa	avings in	Payback
3.NU.		(INR Million)	Gcal /MKwh	Rs Millions	Months
1	Re-Comissioing of LD Gas Holder-2	220	42212	74	35

ENCON Projects with no Investment (2022-23)

		Energy S	avings in
S.No.	Title of Project	Gcal/ MKwh	Rs Millions
1	Reduction in Sp. Heat Consumption of Coke Oven from 678 Mcal/tDC to 636 Mcal/tDC.	147439	258
2	Improvement in Crude Tar yield from 3.09 % to 3.10 %.	2239	4
3	Reduction in Sp. Heat Consumption of Blast Furnace from 514 Mcal/tHM to 486 Mcal/tHM.	123400	216
4	Reduction in Sp. Power Consumption of Blast Furnace from 61.06 Kwh/tHM to 59.36 Kwh/tHM.	7.49	73
5	Improvement in LD gas yield at SMS-1 from 105 Ncum/tCS to 118 Ncum/tCS.	52530	92
6	Improvement in LD gas yield at SMS-2 from 80 Ncum/tCS to 92 Ncum/tCS.	42212	74
7	Reduction in Sp. Heat Consumption of MMSM from 462 Mcal/tIB to 401 Mcal/tIB.	38073	67
8	Reduction in Sp. Heat Consumption of WRM-2 from 258 Mcal/tIB to 244 Mcal/tIB.	8035	14

ENCON Projects with no Investment (2022-23)

		Energy S	avings in
S.No.	Title of Project	Gcal/ MKwh	Rs Millions
9	Reduction in Sp. Power Consumption of WRM-2 from 193.3 KWH/tIB to 179.3 KWH/tIB.	8.03	78
10	Reduction in Sp. Power Consumption of SBM from 109 KWH/tIB to 94.7 KWH/tIB.	7.89	77
11	Reduction in Sp. Heat Consumption of STM from 309 Mcal/tIB to 295 Mcal/tIB.	8170	14
12	Reduction in Sp. Power Consumption of STM from 96.38 KWH/tIB to 80.14 KWH/tIB.	9.48	92
13	Reduction in Sp. Power Consumption of CRMP-1&2 from 35.28 KWH/tGL to 29.62 KWH/tGL.	0.31	3
14	Reduction in Sp. Heat Consumption of CRMP-1 from 1220 Mcal /tGL to 1200 Mcal /tGL.	5968	10
15	Improvement in Power Generation at GETs from 5.46 MW to 6.50 MW.	9.11	89
16	Improvement in Power Generation at COB-4 from 5.65 MW to 7.64 MW.	17.43	170
17	Reduction in BF Gas bleeding from 6.64% to 0.95%.	349694	612
18	Optimization of Energy Consumption in Laddle furnace of SMS-2	15785	28
19	Energy Conservation in Structural Mill	1.06	10
20	Energy Conservation by changing mode of operation by dropping arrester in BSY of SMS-1	0.06	0.6

ENCON Projects with Investment (2023-24)

		Investment	Energy Sa	ivings in	Payback
S.No.	Title of Project	(INR Million)	Gcal/MKwh	Rs Millions	Months
1	Rolling of 8mm TMT Rebar without RSM in WRM 2	0.05	0.023	1.9	1
	Power saving by Reducing the idle speed of GCP ID fans at SMS 1	0.05	1.92	13	1
≺	Modification of pass design for MC 200 rolling at MMSM	0.1	576	0.8	2
	Reduction of power consumption during brush maintenance of GETG	0.25	720	6.3	1

ENCON Projects with no Investment (2023-24)

		Energy Sa	avings in
S.No.	Title of Project	Gcal/ MKwh	Rs Millions
1	Reduction in Sp. Heat Consumption of Coke Oven from 636 Mcal/tDC to 626 Mcal/tDC.	36844	54.47
2	Improvement in Crude Tar yield from 3.10 % to 3.14 %.	9398	13.98
3	Reduction in Sp. Heat Consumption of Sinter Machine 3 from 14 Mcal/t to 13 Mcal/t	2782	4.11
4	Reduction in Sp. Heat Consumption of SMS-2 from 42 Mcal/t to 41 Mcal/t	2160	3.19
5	Improvement in LD gas yield at SMS-2 from 92Ncum/tCS to 100 Ncum/tCS.	31818	47.04
6	Reduction in Sp. Heat Consumption of SBM from 320Mcal/tIB to 318 Mcal/tIB.	1088	1.61

Rashtriya Ispat Nigam Limited

ENCON Projects with no Investment (2023-24)

		Energy S	Savings in
S.No.	Title of Project	Gcal/ MKwh	Rs Millions
7	Reduction in Sp. Heat Consumption of WRM 1 from 275Mcal/tIB to 259Mcal/tIB.	12978	19.19
8	Reduction in Sp. Heat Consumption of CRMP 1 from 1200Mcal/tgf to1192Mcal/tgf	2320	3.43
9	Reduction in Sp. Power Consumption of SMS 2 from 124.30 KWH/tcs to 122.75KWH/tcs.		29.28
10	Reduction in Sp. Heat Consumption of STM from 295Mcal/tIB to293 Mcal/tIB.	1160	1.72
11	Reduction in sp steam consumption of CPP 1 from 3.88 t/MWh to 3.59 t/mwh	258672	382.45
12	Reduction in Sp. power Consumption of Cpp 2 from 33.20 Kwh/ t of steam to 27.09 kwh/ t o steam		40.85
13	Reduction in Sp. power Consumption of CRMP 1&2 from 29.62 Kwh/ t of gf 20.21 kwh/ t o gf		50.87
14	Reduction in Sp. power Consumption of ASP from 171.45 Kwh/TNCM of air to 169.22 Kwh/TNCM		79.11
15	Improvement in power generation from BF TRT from 6.5 MW to 8.14 MW		125.95
16	Improvement in performance of turbo blower -1 of TPP	4.56	40

INNOVATIVE PROJECTS IMPLEMENTED

Nome of the Droiget	Doplicability	Impact on SEC	Annual Savings	Investment
Name of the Project	Replicability	(Mcal/tCS)	(Rs. In lakhs)	(Rs. In lakhs)
Rolling of 8mm TMT Rebar without RSM in WRM 2	Yes	0.0442	19.83	0.5
Modification of pass design for MC 200 rolling at MMSM	Yes	0.1305	8	1.0
Improvement in performance of Turbo Blower -1 of TPP	Yes	0.0000	-	-
Power saving by Reducing the idle speed of GCP ID fans at SMS 1	Yes	0.375	136	0.5
Reduction of power consumption during brush maintenance of GETG	Yes	0.040	630	2.5

INNOVATIVE PROJECT-1

Rolling of 8mm TMT Rebar without RSM in WRM 2

♦WRM 2 is rolling re-bars of different sizes.

To carry out rolling of 8mm TMT rebar, 6 stands out of 8 stands in NTM and 2 stands out of 4 stands in RSM are in the rolling process

Before Modification

-RSM has a gear box with 9 Clutches with highest shaft speed of 10000 RPM which accounts for a significant power consumption

-It also consumes significant power due to high inertia during no load operation also

After Modificatio

- -Last two stands in RSM have been incorporated in NTM last Two Stands -RSM was dummied
 - -Pass Changes & Mill Configuration Setup changes
- -Bypassing RSM Ready Rolling Interlocks in PLC .

These activities resulted in reduction of Power consumption by 226780 KWH and resulted in Energy saving of 0.23Mkwh accounting for annual savings of Rs 19.83 lacks

MMSM produces Angles, beams, channels, rounds, flats and squares

Annual capacity is 8,50,000 tons

SI. No.	Before Modification	After Modification
1	Main drive motor of Stand 5 got breakdown in Roughing Mill Train (RMT) during MC200 rolling.	1. Modification of Mill setup and roll pass design at stand 6 to take care of sized reduction at Stand 5 and subsequent reduction from Stand
2	Estimated time taken to replace the motor is 3 days.	7 th to 11 th .
3	Rolling can't be continued till the motor gets replaced resulting in production loss	2. Modification of the mill configuration has reduced production loss.
4	Results in idle heating of reheating furnaces	3. Resulted in thermal savings by eliminating the idle heating of reheating furnaces

This modification resulted in Energy saving of 576000 Mcal.

8	MMSM MILL C	ONFIGURATION	ä				
	ROUGHING						
STAND IN STAND IV		STAND SH STAND SH STAND GK	STAND 7H STAND EK				
STAND 9H	AND 10K STAND 11H	E MILL TRAIN STAND 12K STAT	ID 13H STAND 14K				
STAND 15H STA	IND 16H STAND 17K	STAND 18H	IND 19K STAND 20H				
OVERVIEW - MMSM MILL TRAIN							

Rashtriya Ispat Nigam Limited

INNOVATIVE PROJECT-3 IMPROVEMENT IN PERFORMANCE OF TURBO BLOWER-1 OF TPP

- The turbo blowers are installed to supply the cold blast to Blast furnaces for its process requirement
- These turbo blowers are of axial flow compressors and prime mover is 29.7 MW Turbine Condensing Type
- The capacity of TB 1 is 5200 nm3/min
 - 1. Cold blast flow from TB 1 is not able to meet the demand of BF 1 due to :
 - a. Low vaccuum in the condenser
 - b. Higher clearance between stator and rotor
 - c. Drop in speed of turbine at higher load
 - d. Higher air temperature after inter cooler

- 1. Condenser tubes are cleaned
- 2. Adjusted the gaps between stator
 - and rotor
- 3. Modification of the stroke of the HP control valve.
- 4. Intercooler bundles cleaned

This modification has resulted in increasing the production of Blast furnace 1 with the same turbo blower. The blower was able to supply 5800 nm3/min

odificat

After

Before

OVERVIEW – Turbo blower station

Rashtriya Ispat Nigam Limited

LP quide adjustment

Inter cooler bundle

INNOVATIVE PROJECT-4

Power saving by Reducing the idle speed of GCP ID fans at SMS 1

- The GCP I.D. fans are installed in each LD converter to extract the LD gas through the gas cooling and cleaning system
- To create suction as required in order to overcome the pressure drop in the system.
- Able to operate with variable flow rates & pressures as well as gas conditions.

SI. No.	Before Modification	After Modification
1	The GCP I.D. fans of SMS 1 are installed for operation at a speed of 600 RPM during non blowing periods.	Reducing the idle running of ID fan from 600 to 300 rpm has reduced the power consumption during non blowing time of the ID fans in SMS 1
2	Additional energy consumption during idle running of Id fans designed to run at 600 rpms	

This modification resulted in Energy saving of 1921725 KWH. Accounting for annual financial savings of Rs1.36Cr

OVERVIEW - SMS PROCESS

Rashtriya Ispat Nigam Limited

Power consumption 0f ID fan running at 600 rpm

Power consumption Of ID fan running at 300 rpm

23

INNOVATIVE PROJECT-5

Reduction of power consumption during brush maintenance of GETG

- 1. The generated BF gas during iron making is cleaned and is passed through Turbine Stations (GETS/TRT) to convert the pressure energy into electrical energy.
- 2. Gas Expansion turbine station consists of two turbo generators (12MW each) respectively connected to BF-1 and BF-2 top pressure gasses. Top Recovery Turbine (14MW) is connected to BF-3.
- 3. BF gas at a Pressure of 2.2 Kscg and 360000Nm3/hr is used in each GETS for generating 12MW

Before Modificatior 1. The static excitation system used to generate magnetic field in the turbine station contains Slip rings and brushes for Excitation supply feeding to generator rotor 2. Brushes and holders are open conductive type, so its maintenance is a non-live activity which takes 3 hrs for replacing brushes.

3. The power generation is to be stopped

1. By adapting online brush replacement using insulated brush holders, the brushes were replaced one after the other with out stopping the rolling of the turbine

2. It helped in eliminating the import of extra power to compensate power requirement during stopping the rolling of turbine during brush maintenance

This modification has resulted in saving the electrical energy by 720 MW

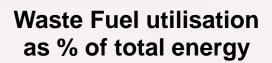
Modification

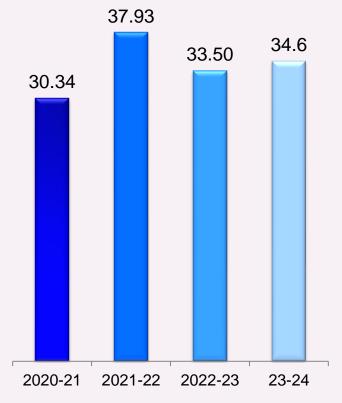
After

BEFORE MODIFICATION

Utilization of renewable energy sources-Solar Energy Utilization

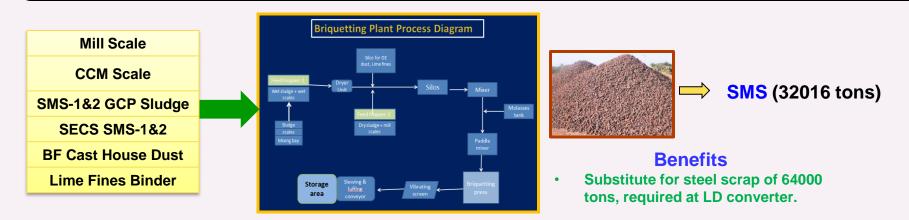
- RINL has been exempted from complying RPPO.
- RINL commissioned 5 MW
 Solar Power Plant
 Investment: Rs 36 cr
- RINL commissioned 0.5 MW Roof Top Solar Power Plant at three Building Investment: RESCO Model

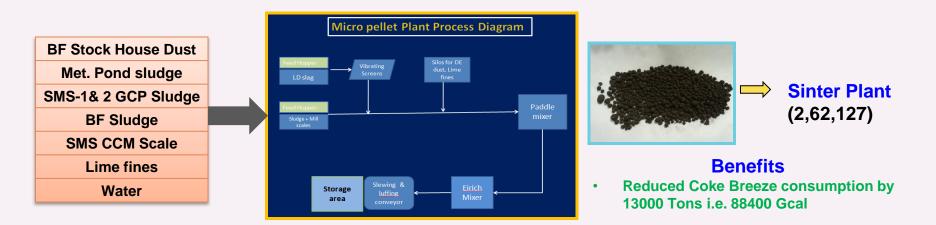

Utilization of renewable energy sources-Solar Energy Utilization


Year	Technology (Solar, Wind, Biomass etc.)	Installed capacity (MW)	Capacity addition (MW) after FY 2021	Total Generation (MWh)	Consum ption (Mkwh)	Share % w.r.t to overall energy cons.
2021- 22	Solar	5 MW		3406 MWh	0.047	0.1
2022- 23	Solar	5.0 MW	0.5MW	684 MWh	0	0
2023- 24	Solar	5.5 MW		686 MWh	0	0

Utilization of Waste Material as fuel

Name of the Fuel	Quantity of waste Fuel used (MT/ year)	GCV of fuel (kcal/kg)	Heat Value (million kcal/year)	Waste Fuel as % of total energy used
Coke Dust	2783	6708	18668	0.06
LD Slag	173690	1000	173690	0.55
Met Waste	467377	500	233689	0.74
Tar sludge	4895	7100	34755	0.11
Benzol muck	1991	7100	14136	0.04
ASP sludge	6584	7100	46746	0.15
BF gas	8085000	861	6961185	21.93
LD gas	476800	1841	877789	2.77
Coke dust(sold)	42681	775	33078	0.10
Granulated Slag	2367937	1070	2533693	7.98
Limefines	50304	1075.012	54077.401	0.17
	Tot	al		34.6





Waste Recycling

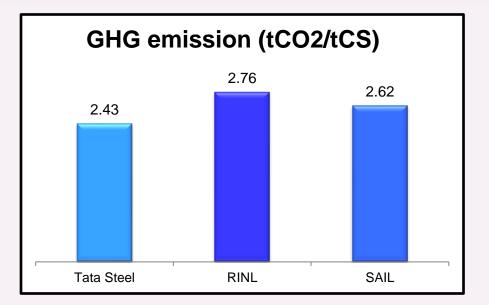
RINL is recycling waste by making Briquettes (0.15 MTPA) and Micro pellets (0.4 MTPA) on BOO basis through M/S Harsco.

Other steel plants are visiting to adopt this model

GHG Inventorisation

As per I	SO:14064	k:-		
Emission	Details			
Scope 1&1.1	Direct emiss determined balance		site chimneys aight carbon	ACTION Member
Scope 2	Upstream er steam from s		electricity and	worldsteel
Scope 3	Other ups products from		nissions by-	CO2 emission (tCO2/tCS)
Scope 1 & 1 1 Scope 2 Scope 3			Total CO2(t CO2/TCS)	2.69 2.60 2.67 2.76
1.926 0.385 0.454 2.766				2020-21 2021-22 2022-23 2023-24

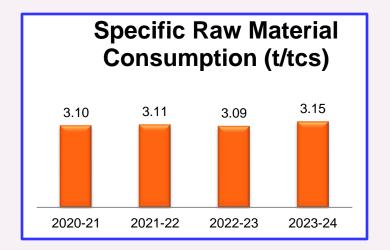
Target & Action plan for GHG reduction


Parameters	2023-24	Short Term (2030)	Long term (2047)	
GHG Emissions	2.76	2.40	2.30	

Action plan

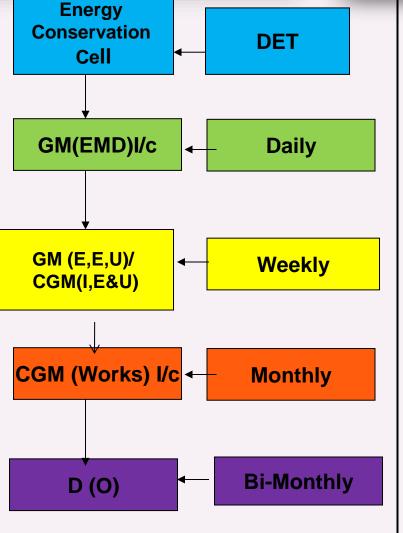
- Increasing PCI >150 Kg/tHM.
- Usage of more scrap based on availability of quality Steel Scrap
- Installation of floating Solar Power Plant at reservoirs (KBR)
- Gas Holder for BF gas & CO gas

GHG Benchmarking


GHG Emission		Gap :0.33 tCO2/tCS
RINL	Tata Steel	 Coal injection > 182kg/tHM(0.20 Gcal/tCS) vs 82 kg/tHM Desmade source of 0.4 terms 000/t00(420
2.76	2.43	 2) Deemed purchased coke of 0.1 tons CO2/tCS(130 kg/tCS) 3) Fuel rate 526 kg/tHM vs 569 kg/tHM (0.29 Gcal/tCS). 4) Plant Production: 10.6 Mt Crude Steel. 5) Scrap Consumption 8.5% 32

Environmental Projects

Projects	Benefits	Sp. Water Cons- Cum/tCS
Up gradation of Electro Static Precipitators (ESP) in TPP	SPM 100 Vs 50 PPM	2.39 2.35 2.26 2.26
Up gradation of Bag Filters at CRMP	SPM <50 PPM	
Internal Repairs of Central Ventilation System (CVS) of SMS-1	SPM 140 Vs <50 PPM	2020-21 2021-22 2022-23 2023-24



Rashtriya Ispat Nigam Limited

EMS & Other requirements

		DAILY E	ENERGY REPORT	r						
uction						15	-Aug-24		En	orau
AL	For the	SHOP	PARAMETER	UNET	NORM	ON DATE	aum.	1		ergy
31 0	Month									
5	298 795	COCCP	Gross Coke Yield :	0	71.3	72.2	72.2		Conse	rvat
	930	Bat-1 Bat-2	Met.Coke Yid . C.O.GAS YIELD :	NCUM/TDC	64.3 335	64.6 338	64.6 330			I Vat
	791	Bat-3	SP.HEAT.CONS :	MCAL/TDC	632	634	616			
	853	Bat-4	C.O.GASC.V. :	KCAL/Noum	4150	4317	4314			ell
	1106	Bat-5							_	
0	287730	SP	SPJHEAT.CONS :	MCAL/TSP	20	26	26			
	96360	SP-1(M/c-1) SP-1(M/c-2)	SPUIEAT.CONS : SPUIEAT.CONS :	MCAL/TSP MCAL/TSP	27	29	29			1
	121250	SP-2(M/c-3)	SP.HEAT.CONS :	MCAL/TSP	9	14	13			1
-	0	BF-1	SP.HEAT.CONS-1:	MCAL/THM	560	0	0	1		1
•	87850	BF-2	SP.HEAT.CONS-2:	MCAL/THM	560	446	460		_	L.
•	87200	BF-3	SPJHEAT.CONS-3:	MCAL/THM	420	446	461			/
0	175050	BF(AII) Pellets/SHM(DF)	SP.HEAT.CONS (AI): B.E.GAS VIELD:	MCAL/THM Noum/TC(D)	531 3125	458 3132	474			
	53	Pallets/SHM(DF-1)	COKE BATE BF-1:	KG/THM	430.3	3132	3088			
	106	Pellets/SHM(DF-2)	CONE BATE BF-2 :	KG/THM	430.3	508	503		GM(E	
	0	Pellets/SHM(DF-3)	COKE RATE BF-3:	KG/THM	442.9	553	505			
4	1332	Sinter/tHM(BF)	COKE RATE (AI) :	KG/THM	433	531	504			
	•	Sinter/tHM(BF-1)	Pul Coab BF-1:	KG/THM	120.6	•	•			
3 5	1311	Sinter/tHM(DF-2) Sinter/tHM(DF-3)	Pul Coal: BF-2: Pul Coal: BF-3:	KG/THM KG/THM	120.6	74	80 77		-	
	0.0	02-05-1	Pul Coal (All:	KG/THM	117.7	64	78			1
	3.0	02 85-2	B.F.GAS.C.V.:	KOLNUN	850	874	857			1
	2.5	02 85-8	COAL BATE :	KG/THM	834	935	906			1
		SMS-1	HOT METAL BATE(R):	KG/TLS	1000	1035	1035	1		1
1	77527 73468	LS CS	SPUHEAT CONS: CONV.GAS YIELD :	MCAL/8CS NOUM/TLS	47	51 106	51 112			1
·	3466	Heats	SPLOXYGEN CONS :	NCUM/TLS	59	69	49			,
			SPARGON CONS :	NCUM/Heat	226	218.4	148.8			
			SPLPG CONS:	Kg/tCS	0.19	0.30	0.32			
	93176	SMS-2 LS	HOT METAL RATE(R): SP.HEAT.CONSITIATE:	KG/TLS MCAL/TLS	1000	1000	1000			
ō	90380	G	LD-GAS YIELD :	NCUM/TLS	87	97	101		GM (E	FII
	40.9	Heats	Total Heats	Nos	131	75	76.6			, _ ,∪
			LD Gas CV Liquid Steel	KCAL/Neum Tons	1825	1851	1836			
			Crude Steel	Tons	18402	10617	163848		CGM(.E&
5	14163		Sp.Heat(CRMP-2):	MCAL/TGL	950	770	768			,
7	43912	BILLETS BARS	SPUIEAT CONS : SPUIEAT CONS :	MCAL/TIP MCAL/TIP	460	458	468			
2	30476	WRM-1	SP.HEAT CONS :	MCAL/TIP	251	284	302			
5	34729	WRM-2 MMSM	SPUIEAT CONS : SPUIEAT CONS :	MCAL/TIP	260	263	274 #DIV/0!			
	34729	SBM	SPUIEAT CONS : SPUIEAT CONS :	MCAL/TIP MCAL/TIP	320	277	278			1
3	27344	STM	SPUIEAT CONS :	MCAL/TIP	325	280	295			
	152 91	TPP PP-2	SPUIEAT CONS : SPUIEAT CONS :	MCAL/TP MCAL/TP	755	857 795	913 774			
	3.1	PP-2	HEAT RATE (PP-2):	MCN/MWH	2456	3080	3114			\mathbf{V}
	7.5		STEAM RATE (PP-2):	Ton/MWH	3.4	3.71	3.75			
8 5	32.4		POWER GEN.(BPTS): POWER GEN.(TRT + GETS):	MW NW	36.0	20.8	22.4			
.0	380.1		POWER GEN. [NEDO]:	NW	5.0	0.0	0.0		CGM (V	Nor
4	372675	LOSSES	C.O GAS Bleeding: BJF GAS Bleeding:	*	0.2	0.00	0.00			
•	68059		to the seeding:	r .	2.0	0.12	0.22			
5	123089		CKYGEN Bleeding:	*	2.0	14.4	15.7			
8	25.71	PLANT	NITROGEN Bleeding: SP.POWER CONS :	1% KWH/TCS	2.0	13.9 582	11.3 541			1
5	11.34	A.P.P	SP.ENERGY CONS:	GCAL/TCS	6.00	6.91	6.72			1
1	0.59	TPP	OIL CONSUMPTION:	KQ.	83	0	0.0			1
7	14.83	1	CO2 EMISSIONS:	e002/e05	2.58	2.98	2.94			1
6	winge	210	quantif	ind	with	roc	noct 4			-
Jà	vings	are	quantif	eu	with	res	pect t	0		
ien	t of Boi	ler Coa							П	(O)
							ng wit			$(\mathbf{\nabla})$
			quantifie							

Electricity imported. -Savings are certified by Energy Auditors

Product ACTUA

On dat

255

51

• •

• •

5151 4867 36

5928

5750 39

165 81 2.4 6.6 29.8

108.5 384.0

26223 7195

25.38

11.15 0.61

15.07

Monthly

Plan/day

744000

434000

189000 242000 1268.709677

242000

234000 1560

431000 476000

P-2 GETS WHR

imp Plant Load

Steam (PP-1) B Coal (PP-1)

team (PP-2) VM(C.Coal)

ASH(C.Coal) VM(Coke)

ASH(Coke)

-Energy

displacem -Electrical

Fla 2550

Energy Management System ISO:50001

BUR

Certification

Bureau Veritas

Features:

- Significant Energy Use
- Developing Energy Management programmes.
- Operational control of identified energy aspects
- Monitoring and Measurement
- Risk & Opportunities
- Internal Audit
- Management Review
- Re-certification completed for ISO: 50001, Ver 2018 in Dec'22.

	RASHTRIYA ISPAT NIGAM LIMITED VISAKHAPATNAM STEEL PLANT
	UNIT OF
	VISAKHAPATNAM - 530 031, ANDHRA PRADESH, INDIA.
	eritas Certification Holding SAS – UK Branch certifies that the Manageme e above organization has been audited and found to be in accordance wi requirements of the Management System Standard detailed below.
-	Standard
	ISO 50001:2018
	Scope of certification
Original cyc	ole start date: 28 December 2010
Recertificat	tion cycle start date: 27 December 2022
	the continued satisfactory operation of the organization's Management Syste ate expires on: 27 December 2025
	No. IND.22.15132/EN/U Version: 1 Issue date: 27 December 20
1	2
J .	
	on behalf of BVCH SAS UK Branch
Jagdhee Director	esh N. MANIAN r – CERTIFICATION, South Asia
Jagdhee Director Commo	esh N. MANIAN r - CERTIFICATION, South Asia datates, industry & Facilities Division Cartification body Oth Floor, 60 Presoct Street, London, E1 BHG, United Kingdom.
Jagdhee Director Commo	esh N. MANIAN Power Processing Power

Organization	Learnings			
Tata Steel	Use of super absorbent polymer to reduce moisture in coke			
Tata Steel	Thermal Hawk : Microbolometer			
Tata Steel	Predictive modeling project for CO Gas Generation			
Bhilai Steel plant	DECONTAMINATION FACILITY OF PURE POLYCHLORINATED BIPHENYLS (PCBs) IN TRANSFORMERS			
JSL(Hisar)	O2 enrichment in Reheating furnace			

Frequency of DEA and Status

Following the Energy Conservation Act-2001, RINL is conducting Detailed Energy Audit once in three years.

DETAILS OF ENERGY SAVING MEASURES RECOMMENDED IN THE ENERGY AUDIT REPORT (2023-24)							
				Investment		Annual Energy Savings	
Sl. No	Department	Energy Conservation Measure No.	Energy efficiency improvement measures	Lakhs of Rupees (Million)	Coal/ Coke (T/ Year)	Electricity (kWh/ Year)	Others (TOE/year)
1	CO & CCP		ENERGY CONSERVATION BY REDUSING EXCESS FLUE GAS VOLUME IN COB - 5	-	3088.69		926.61
2	Blast Furnace (BF)	ECM-2	ENERGY CONSERVATION BY REDUCTION IN FUEL RATE OF BLAST FURNACE BY INCREASING HOT BLAST TEMPERATURE FROM 1050 °C TO 1200 °C	-	109760.17		32928.05
3	Blast Furnace (BF)	ECM-3	ENERGY CONSERVATION BY IMPROVING SINTER PERCENTAGE IN BLAST FURNACE BURDEN FROM 65% TO 80% TO REDUCE FUEL RATE	-	205800.30		61740.09
4	Blast Furnace (BF)	ECM-4	ENERGY CONSERVATION BY INCREASING PULVERIZED COAL INJECTION (PCI) IN BLAST FURNACES TO BY ENERGY COST SAVINGS	-	31202.53		9360.76
5	LMMM		ENERGY CONSERVATION BY PLUGGING AIR LEAKAGE IN RECUPERATOR	_	4239.45	490568.13	1271.83
6	MMSM	ECM_6	ENERGY CONSERVATION BY PLUGGING AIR LEAKAGE IN RECUPERATOR	-	1710.09	189171.8	513.03
7	WRM-1	I FCM_7	ENERGY CONSERVATION BY PLUGGING AIR LEAKAGE IN RECUPERATOR	-	1135.40	206401	340.62
8	SBM		ENERGY CONSERVATION BY PLUGGING AIR LEAKAGE IN RECUPERATOR	-	1640.46	235554	492.14
9	STM	I FCM_9	ENERGY CONSERVATION BY PLUGGING AIR LEAKAGE IN RECUPERATOR	-	1204.24	245598.6	361.27
10	CPP-1/TPP	$I = F(M_{-}I)$	ENERGY CONSERVATION BY REDUCING AIR INFILTRATION IN FLUE GAS PATH (BOILER-5)	-		4615103.20	1107.62
11	CPP-1/TPP		ENERGY CONSERVATION BY REDUCING EXCESS AIR SUPPLIED TO BOILER-6	_	9106.14		2731.84
12	CPP-1/TPP		ENERGY CONSERVATION BY REDUCING AIR INFILTRATION IN FLUE GAS PATH (BOILER-6)	_		3138838.00	753.32

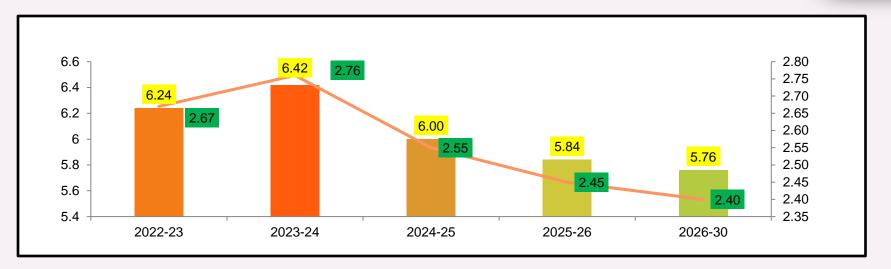
Frequency of DEA and Status

Following the Energy Conservation Act-2001, RINL is conducting Detailed Energy Audit once in three years.

				Investment	Annual Energy Savings		
Sl. No	Departmen t	Energy Conservation Measure No.	Energy efficiency improvement measures	Lakhs of Rupees (Million)	Coal/ Coke (T/ Year)	Electricity (kWh/ Year)	Others (TOE/year)
13	TPP-CPP1	ECM-13	ENERGY CONSERVATION BY INSTALLATION OF NEW REGENERATIVE AIR HEATER (RAH) FOR BOILER-1	112.10	9600.00	58469202.58	16912.61
14	CPP-1/TPP	ECM-14	ENERGY CONSERVATION BY IMPROVING THR OF TG-5	-		8524978.97	2045.99
15	CPP-1/TPP	ECM-15	ENERGY CONSERVATION BY IMPROVING CONDENSER VACUUM IN TG-2 OF TPP-1	120.00		17042043.50	4090.09
16	CPP-1/TPP	ECM-16	ENERGY CONSERVATION BY REDUCING EXCESS AIR SUPPLIED (BOILER-1 OF CPP-2)	-	7660.68		2298.20
17	CPP-1/TPP	ECM-17	ENERGY CONSERVATION BY REDUCING EXCESS AIR SUPPLIED (BOILER-2 OF CPP-2)	-	14387.35		4316.20
18	TPP-CPP2	ECM-18	ENERGY CONSERVATION BY INSTALLING NEW VAMS	100.00		5823492.06	1397.64
19	TPP-CPP2	ECM-19	ENERGY CONSERVATION BY INSTALLING NEW 3RD GETS TO UTILIZE ADDITIONAL BF GAS	300.00		40525714.29	9726.17
20	CRMP	ECM-20	ENERGY CONSERVATION BY REDUCING FLUE GAS LOSSES BY CONTROLLING EXCESS AIR IN ROTARY KILNS OF CRMP-1	5.00	7602.75		2280.83
21	CRMP	ECM-21	ENERGY CONSERVATION BY REDUCING FLUE GAS LOSSES BY CONTROLLING EXCESS AIR IN SHAFT KILNS OF CRMP-2	2.00	4054.62		1216.39
22	Utilities	ECM-22	ENERGY CONSERVATION BY REPLACEMENT OF EXISTING AHU FANS WITH ELECTRONICALLY COMMUTATED FANS (EC FANS)	1.00		144480.00	34.68
23	ACVS	ECM-23	ENERGY CONSERVATION BY REPLACEMENT OF EXISTING AHU FANS WITH ELECTRONICALLY COMMUTATED FANS (EC FANS)	4.65		941488.00	225.96
24	Utilities	ECM-24	ENERGY CONSERVATION BY INSTALLING ENERGY EFFICIENT PUMPS IN PRIMARY PUMPING SYSTEM OF CHILLED WATER PLANT-5	3.60		723879.77	173.73
			Total	644.75	4,12,192.88	14,13,16,513.66	1,57,245.68

Rashtriya Ispat Nigam Limited

Net Zero Commitment



Parameters	2030	2047	2047 (with policy intervention)
GHG Emissions	2.40	2.30	2.00

Action plan (With policy intervention)

- Usage of Natural Gas based on availability and cost
- Usage of more scrap based on availability of quality Steel Scrap
- Installation of floating Solar Power Plant
- Installation of WHR systems like regenerative burners in reheating furnaces and Coal Moisture Control with financial assistance from National Clean Energy (NCEF)
- Usage of hydrogen in Blast furnace based on availability and cost

Roadmap for reduction of Energy Consumption & GHG emissions.

Action plan to achieve 2.40 tCO2e/tCS by 2030,

- a. Increasing Pulverized Coal Injection in Blast Furnace >150 Kg/tHM
- b. Optimizing power generation from Waste Heat Recovery system like CDQ, SHRPP & TRT
- c. Process optimization (combustion improvement, installation of VFD drives, optimizing fuel rate in BF)
- d. Exploring pellet usage in Blast Furnaces.

Pride of Steel

□ Usage of Hydrogen in place of PCI coal

□ Injection of CO Gas in BF, Syngas injection into BF

□ Carbon Capture usage and Storage (CCU&S) technology

National Energy Conservation Week Celebration

Energy Quiz competition

Energy Awareness Program at Various Departments

Awards

- Cll National Award for Excellence in Energy Management consecutively for seven years 2023, 2022, 2021, 2020, 2019, 2018 & 2017.
- Cll National Energy Leader" award five times (2023,2022, 2021, 2020 & 2019).
- National Energy Conservation Award-1st Prize from Ministry of Power-2019
- RINL received TOP PERFORMER Award from Shri R RK singh, Minister for Power & Renewable Energy for obtaining highest Energy savings (1,29,907 Escerts) among all industries for PAT 2nd Cycle.

Escerts Sales

Total No. Of Escerts Sold	38,737
Revenue generated	<u>8.41 Cr</u>

Thank you

🗊 राष्ट्रीय इस्पात निगम लिमिटेड **RASHTRIYA ISPAT NIGAM LIMITED**

